Refugia, or natural areas that are relatively buffered from a changing climate, can offer protection for wildlife and the ecosystems on which they depend. Most species do not have the ability to adapt rapidly to climate change-induced environmental disruptions such as drought and heatwaves. A recent focus on the importance of refugia, including factors such as size and connectivity between adjacent refugia has given rise to a new publication by the United States Geological Survey. Using existing examples and a broader understanding of the complexities of these vital landscapes offers “an opportunity for hope, a chance to be proactive in a time of adversity and uncertainty,” according to Toni Lyn Morelli, USGS Research Ecologist.
In order to provide opportunities for increasing knowledge through networking and information sharing to better predict drought events, the National Integrated Drought Information System (NIDIS) established the Pacific North West Drought Early Warning System (PNW DEWS). To this end, the NIDIS is requesting in-put on drought-related projects and activities that are going on throughout the Pacific North West and in Southern Alaska regions. This information will be displayed on the Drought.gov website (to be re-launched in late Spring 2020).
For more information about the types of activities NIDIS wants to feature on the website and to submit activities, click here. (The form takes about 10 minutes to complete).
In light of experience the first drought experienced in the Southern region of Alaska and likely to continue in years to come, WPC’s asked about whether the NIDIS is planning to establish an Alaska DEWS. In response Britt Parker – the Coordinator of the Pacific Northwest DEWS stated “[w]e are working with partners to identify ways to provide more support for Alaska! While I do not think it will result in setting up a DEWS immediately, we are looking at options for the long term while identifying research and efforts to better understand drought in Alaska in the short term.
Another great resource that can assist in forecasting drought and stream flows in Alaska is the Community Collaborative Rain, Hail & Snow Network (CoCoRahs). The contact information for the CoCoRahs Alaska Coordinator is:
Martin Stuefer
Alaska State Climatologist
Alaska Climate Research Center
University of Alaska Fairbanks
2156 Koyukuk Drive
P.O. Box 757320
Fairbanks, Alaska 99775-7320
907-474-6477 mstuefer@alaska.edu
WPC is convening a session topic entitled “The Impacts of Mining and Climate Change on Rising Stream Temperatures in Alaska” for the American Water Resources Association’s Annual Meeting taking place in Orlando, Florida from November 3-6.
In the summer of 2019, due to dramatic temperatures increases, thousands of salmon died throughout Alaska as they migrated to spawning grounds, because the water exceeded lethal temperature limits. These climate related stressors are further exacerbated by state and federal lands that are being opened to mining and related development on fish and wildlife populations.
The Session will address the impacts of increasing water temperatures in watersheds affected by land releases and therefore, the combined impacts of climate change and mining development on subsistence resources in Alaska including: 1) Application of models starting with global emission scenarios that will ultimately detect instream flows for specific subbasins and collection of instream flow, temperature and dissolved oxygen data; 2) Identify lands that include critical fish habitat and potential locate able minerals that have been opened for mining; and 3) A process for applying the modeling and data collected to assist policy makers and land managers to mitigate land uses that potentially exacerbate climate related impacts to watersheds.
Please contact us if you are interested in being a presenter on this topic and traveling to Orlando in the fall!
Tentative Presentation Topics include : 1) Forcasting drought and temperature increases and modeling stream flows in Alaska; 2) Use of Traditional Knowledge in Protecting Rivers in the Arctic; 3) Bureau of Land Management FLPMA Land Withdrawal Revocations; Overview of 2019 Water Year in Alaska; 4) Pacific Northwest Drought Early Warning System.
The U.S. Fish and Wildlife Service’s Federal Subsistence Management Program will continue conducting a water temperature monitoring project for the next two summers at rivers and streams throughout Alaska. This effort is associated with fisheries monitoring projects funded through the Fisheries Resource Monitoring Program (Program), and has been ongoing since 2008. According to the Program, temperature can impact fish through changes in metabolic rate, primary production, respiration, growth, decomposition, water chemistry, migration timing and susceptibility to disease. At the same time “[d]evelopment adjacent to stream habitats…as well as changes in climate can potentially cause fluctuations in water temperature beyond the behavioral and physiological tolerance of aquatic organisms, including fish, that could have a deleterious effect on their productivity and availability to subsistence users.”
Federal, State, and Tribal organizations in Alaska are currently collecting water temperature data for such subsistence streams. The Program is looking to highlight the importance of uniform data collection, standardization, and reporting, to ensure that such data is reliable for monitoring climate change and supporting conservation actions.
The Alaska Online Aquatic Temperature Site (AKOATS) platform, hosted by the University of Alaska Anchorage’s Alaska Center for Conservation Science, is currently used to make this data available to the public. The platform was developed with the idea that it would serve as a centralized location to access stream temperature monitoring data collection across Alaska.
Covering approximately 1% of the Earth’s surface, the world’s freshwater rivers, lakes and wetlands are home to 10% of all species and more fish species than in all the oceans combined. Posing a threat to global communities who rely on rivers, lakes, and tributaries for food, water, and economic well-being, however, 83% of freshwater species and 30% of freshwater ecosystems have been lost since 1970. In response to the alarming rate of loss of freshwater ecosystems, a recently released study developed by scientists from across a spectrum of environmental and academic institutions outlines a framework for protecting such ecosystems.
Calling it an “Emergency Recovery Plan”, the study proposes six scientifically based strategies to preserve freshwater biodiversity, that have proved successful in certain locations. These solutions include: Returning rivers and streams back to their natural flows; Protecting freshwater from toxic effluents, overfishing, invasive species and mining activity; Protecting critical habitat; and Restoring river connectivity through regulation of land uses and water infrastructure. James Dalton, Director of the International Union for Conservation of Nature Global Water Program says, “all the solutions in the Emergency Recovery Plan have been tried and tested somewhere in the world: they are realistic, pragmatic and they work. We are calling on governments, investors, companies and communities to prioritize freshwater biodiversity – often neglected by the conservation and water management worlds. Now is the time to implement these solutions, before it is too late.”
We’ve all heard that the best way to counter the coronavirus is to wash our hands frequently with soap and water but, for more than 40 percent of the world’s people, access to clean water for regular handwashing is a challenge. The United Nations, in an effort to improve access to safe water for drinking, bathing, and frequent handwashing, have identified three key factors contributing to this shortfall.
Cycles of drought or shortages brought on by climate change have left many communities around the globe with water shortages. Vast numbers of people live without running water in their homes, or experience water scarcity during portions of the year. Moreover, poor sanitation due to primitive waste management, unregulated mining practices, and agricultural run-off contaminate vital streams and rivers. Finally, the infrastructure used to transport water is aging, and treatment of water used to dispose of drugs, cleaning products, and other household goods is expensive and difficult.
Long-term planning and innovative measures to conserve water, capture rainwater, and reuse wastewater are needed on a broad scale to combat these issues, both locally and at a national level. While these actions may not stim the current tide of coronavirus infections, they are critical in addressing future infectious outbreaks. Read more
Scientists from multiple agencies, working collaboratively to supply data to the Arctic Integrated Ecosystem Research Program, are detecting rapid changes in the Bering and Chukchi Seas. These changes are driven by abnormally high water temperatures and rapid loss of sea ice (on par with climate predictions for 2040), and include high numbers of Pacific cod and pollock expanding into Arctic waters, higher concentrations of harmful algal blooms, and a sea bird die-off that began in 2014 impacting puffins, common murre and, most recently, short-tailed shearwaters. At the base of the food web, larger, high-fat copepods are declining while smaller, copepods with a lower-fat content are flourishing. This means less nutrition for Arctic cod, while, at the same time, more competition for these resources as pollock expand their range northward.
But these troubling changes are not limited to northern ocean waters. Inland, freshwater rivers in the Arctic are overheating. Record-warm temperatures in July, 2019 caused heat stress and a mass die-off in returning, pre-spawned salmon. Read more.
The report also highlights coexistence of forests, wildlife and local communities is highlighted to provide the perspective of local communities of the impacts of climate change and extraction industries especially mining. Such development leads to loss of forest cover, depletion of groundwater, increase in net-carbon emissions, changes in local weather patterns, loss of traditional tribal livelihoods and a collapse of various plant and animal species—all in the name of ‘development’.
The report show cases the case of Devi, India in which twenty year earlier, locals took the lead in returning health back to forest ecosystem after mining activity devastated the area. This included groups of mostly women who get up early in the morning to patrol forests in groups and digging pools and making mud dams to conserve water. Now a fully recovered forest with abundant resources including a steady supply of food and water, which has resulted in the return of the animals.
According to the report, “[t]hese natural resource dependent communities are among the poorest of the poor.” “They have not had a single day of formal education. And yet they have been the ones protecting this 200-hectare forest for the past twenty years or so.”
Similarly, Last month Hannah Panci from the Great Lakes Indian Fish and Wildlife Commission spoke at Lawrence University as part of the Spoerl Lecture Series, about climate impact and preparedness. Specifically, Panci discussed working with almost a dozen local Native American tribes, to develop a climate vulnerability assessment which combines both scientific research and traditional ecological knowledge (TEK) in order to create a vulnerability score for different species on tribal lands.
The organization gathers TEK by visiting the various communities, which include members that still make their living off hunting, gathering and fishing, and interviewing community these members about changes they are noticing about fish and wildlife they use for subsistence. Through this process, important information about traditions that have been passed down for generations and which species are the most important to the tribes. According to Panci, two of the main ones are wild rice and walleye, but there are 11 primary species that tribal members are concerned about.
The Great Lakes Indian Fish and Wildlife Commission then applies this information to determine what impacts climate change is having on these species and apply current scientific data to create maps of the region where such impacts are occurring and apply protection measures. By combining conventional science and local knowledge of locals is the best possible means for assisting tribal communities in the Great Lakes to prepare for climate change.
Finally, during a recent event at UC Davis in March 12, professor Beth Rose Middleton who is chair of the Native American Studies Department and Fellow at the John Muir Institute of the Environment, discussed “Tribal Leadership in Climate Change Adaptation.” Professor Middleton discussed the leadership in environmental policy and planning provided by California Indian nations in traditional including land stewardship and interventions in state, national and international policy. Middleton’s research includes Native land trusts, Native-led conservation land acquisitions, tribal participation in the carbon credit market and the importance of re-introducing traditional fire management.
The National Climate Adaption Science Center (NCASC), under the US Geological Survey, has undertaken a nationwide assessment to better understand how droughts impact ecosystems and the people who depend on those ecosystems. Expanding beyond the traditional means of evaluating drought impacts based solely on detriments to agriculture, livestock and hydrology, this study explores drought which encompasses episodic water deficit impacts to whole ecosystems, along with the resulting human impacts.
During the assessment period, NCASC collected and synthesized data across the nation through regional workshops and produced ecological drought factsheets and an interactive map. Current data gaps were identified and an Ecological Drought Working Group was formed in a collaboration between NCASC and the Science for Nature and People Partnership (SNAPP) to assist in risk management going forward.
To learn more about this ongoing project,see: https://wim.usgs.gov/geonarrative/ecologicaldrought/
An ambitious effort to quantify climate-driven impacts on both glacially-fed coastal ecosystems and Alaska’s fire-prone boreal forest is under way. A new round of funding through the National Science Foundation’s Established Program to Stimulate Competitive Research (EPSCoR) was awarded in October 2018 to collaborating faculty at UAF, UAA and UAS. The 5-year, $20-million-dollar project, entitled Fire and Ice: Navigating Variability in Boreal Wildfire Regimes and Subarctic Coastal Ecosystems, is now prepping for a second summer of field work.
In Kachemak Bay (south-central Alaska) and Lynn Canal (south-eastern Alaska) researchers are evaluating changes in ocean temperature and chemistry in both glacial and non-glacial coastal ecosystems. Stream monitoring, including temperature, sedimentation, and flow measurements began in the spring of 2019 and will continue throughout the granting period. Additionally, researchers are collecting isotope measurements to help identify the sources of water in a given stream (e.g., glacial, snow-melt, groundwater or rainfall). The data will contribute to a greater understanding of the freshwater input into Alaska’s estuarine systems and the effects of continued climate change on these highly-productive ecosystems.
Throughout Alaska’s extensive boreal forest, Fire and Ice researchers are investigating fire activity and associated climate-related impacts. Data will contribute to improved community risk-assessments through modeling to predict lightning probabilities, assess available fuels, and evaluate seasonal climate forecasting in order to better predict fire risks and severity.