Alaska Native village communities located on the Seward Peninsula region (Villages) rely on healthy watersheds, fish and wildlife for their subsistence needs. At the same time rising temperatures and low snow pack in the region are reeking havoc on the delivery of water when it is most needed. For example, air temperatures in the region, which are rising twice as fast as other places in the country, broke records during the month of July 2019.
These temperature increases are impacting the subsistence livelihoods of the Villages through decreased dissolved oxygen combined with other weather related changes, including low river flows, altered ice flows, and stream bank erosion. In addition, because rivers and streams located within the Western Alaska region are largely fed by snow melt, rising temperatures in the region means rain (instead of snow) is becoming more prominent in the fall and winter. This is resulting in increased seasonal flood events which threaten community infrastructure and scour stream beds used by fish and wildlife.
These sudden changes are impacting fresh water ecosystems during the summer months as well. In 2019 about 22 rivers and streams throughout Alaska reported record water temperatures, as compared to just 7 in 2018. As a result, in June and July 2019, thousands of salmon died as they migrated to spawning grounds in Western Alaska, because the water temperatures exceeded lethal limits for the fish. For example, the Tubulik near Elim and Koyuk had record temperatures as high as 16 degrees centigrad at the Vulcan Creek gage site, 30 miles from the mouth.
These climate related stressors are further exacerbated by non-climate stressors including mining and related development on fish and wildlife populations. Specifically, during 2020, the U.S. Bureau of Land Management will be opening over 46 million acres in 1-3 million acres increments, to mining and other development throughout Alaska. As part of this process, the agency plans to open about 3 million acres covered by the Kobuk-Seward Resource Management Plan (Plan) of BLM Alaska land mineral entry and remove community-supported Areas of Critical Environmental Concern. The Plan, however, does not address the impacts of increasing water temperatures in watersheds affected by land releases and therefore, the combined impacts of climate change and mining development on subsistence resources.
The Native Village of Elim is applying for funding for it’s Tubutulik River Temperature, Dissolved Oxygen (DO) and Stream Flow Monitoring Plan Project is working to develop a climate change risk assessment for the Tubutulik River Watershed (Watershed) that will include: 1) Application of drought and temperature forecasting for the Seward Penninsula to predict instream flows and temperature; 2) Protocols for collection of instream flow, temperature and dissolved oxygen data during the summer season when temperatures are at their highest; 3) Identify lands within the Watershed that include critical fish habitat and potential locateable minerals that have been opened for mining under the Kobuk-Seward Peninsula Resource Management Plan (RMP); 4) Identify a process for applying the modeling and data collected to assist policy makers and land managers to mitigate land uses that potentially exacerbate climate related impacts in the Watershed and 5) Apply for instream flow water rights under Alaska state law on stream reaches in sensitive watersheds that have been open to mining activity.
Once the Assessment is completed, it will serve as an ecosystem-wide vulnerability assessment for natural resource(s) that can be used by multiple tribes as a template for conducting their own modeling, data collection and outreach to federal and state agency land managers. There are multiple sensitive salmon streams and rivers within the RMP planning area that other tribes rely on for subsistence practices that will be impacted by the opening of lands to mining under the RMP. The Assessment will, therefore, specifically benefit the other Village communities located on the Seward Peninsula by assisting in the prediction of instream flows and temperature impacts to salmon and other fisheries, and measures that will result in quantifiable, locally based watershed protection from the potential impacts of climate change and land development.